รู้จักจุฬาฯ
การบริหาร
อัตลักษณ์มหาวิทยาลัย
Green University
Sustainability
ติดต่อจุฬาฯ
บริจาคให้จุฬาฯ
หลักสูตร
การสมัครเข้าศึกษา
หน่วยงานการศึกษา
บริการนิสิต
บริการวิชาการ
บริการทางการแพทย์
บริการตรวจวิเคราะห์คุณภาพ
สารสนเทศและการสื่อสาร
พื้นที่สร้างสรรค์
ข่าวสารและความเคลื่อนไหว
วารสารจุฬาฯ
สาระความรู้
ข่าวสารจุฬาฯ
20 สิงหาคม 2567
ข่าวเด่น
ผู้เขียน ณรัล ลีลามานิตย์ Project Director Sasin Management Consulting (SMC)
จากเหตุการณ์ภัยพิบัติทางธรรมชาติไม่ว่าจะเป็นพายุ อุณหภูมิในหน้าร้อนสูงเป็นประวัติการณ์ รวมถึงไฟป่า อากาศแล้งจนไม่สามารถเพาะปลูกได้ที่ดูเหมือนจะทวีความรุนแรงขึ้นอย่างต่อเนื่องในช่วง 3-4 ปีที่ผ่านมาอันเนื่องมาจากภาวะ climate change ทำให้หลายประเทศทั่วโลกให้ความสำคัญกับเรื่องของการลดการปล่อยก๊าซเรือนกระจก รวมถึงการทำสัญญาต่างๆเพื่อมุ่งไปสู่ net zero economy และการส่งเสริมให้ใช้ renewable energy (พลังงานทดแทน) จนบางที่มีการเรียกร้องให้ถึงกับหยุดการใช้พลังงานจากฟอสซิล (fossil) โดยสมบูรณ์
ผู้เขียนเชื่อว่าหลายๆท่านคงจะเห็นข่าวว่าพลังงานทดแทนไม่ว่าจะเป็นจากพลังงานแสงอาทิตย์ และพลังงานลม ในหลายๆพื้นที่มีต้นทุนในการผลิตไฟฟ้าที่ต่ำกว่าการผลิตไฟฟ้าจากพลังงาน fossil นอกจากนี้รถไฟฟ้าอีวี (EV) ที่เทคโนโลยีมีการพัฒนาอย่างต่อเนื่องและวิ่งได้ระยะทางไกลขึ้นต่อการชาร์จ และมีราคาถูกลงจนในปัจจุบันหลายๆรุ่นมีราคาเทียบเท่ากับรถยนต์เครื่องยนต์สันดาปภายในแล้ว ซึ่งการลดลงของต้นทุนในการผลิตไฟฟ้าจากพลังงานทดแทน รวมไปถึงภาคยานยนต์ที่เริ่มให้ความสำคัญกับรถยนต์ไฟฟ้ามากขึ้น แม้ว่าหลายค่ายอาจจะมีการปรับชะลอการลงทุนรถไฟฟ้าไปบ้างเนื่องจากสภาพเศรษฐกิจและยอดขายที่อาจจะไม่ดีนัก นับว่าเป็นสิ่งที่ดีต่อทั้งผู้บริโภค เศรษฐกิจ สังคมและสิ่งแวดล้อม จนทำให้หลายคนคาดว่าในอนาคตอันใกล้นี้ เศรษฐกิจและสังคมของโลกเราจะไม่จำเป็นต้องพึ่งพาพลังงานจากฟอสซิล (fossil) อีกต่อไป และในบางกรณีที่ extreme มากหน่อยคนบางกลุ่มคิดว่าการที่บริษัทน้ำมันรวมถึงบริษัทปิโตรเคมีขนาดใหญ่วันนี้ที่มีการลงทุนอย่างต่อเนื่องในภาคพลังงานที่ใช้ fossil ก็เพราะมุ่งเน้นแต่ผลกำไร และไม่ได้สนใจสิ่งแวดล้อมนั้นอาจจะไม่ถูกซะทีเดียว ซึ่งในมุมมองของผู้เขียนเชื่อว่าโลกและธุรกิจจำเป็นที่จะต้องเปลี่ยนผ่านไปสู่พลังงานที่สะอาดขึ้น ในเวลาและจังหวะที่เหมาะสมของแต่ละอุตสาหกรรม และในแต่ละบริบทของประเทศ หลายๆประเทศอาจจะเหมาะกับ energy addition มากกว่า energy transition ในอนาคตอันใกล้นี้ เพราะบริบทของเศรษฐกิจ สังคมไม่เหมือนกัน
ดังนั้นในบทความนี้ผู้เขียนอยากจะบอกถึงความสำคัญของอุตสาหกรรมพลังงาน fossil ต่อสภาพเศรษฐกิจ สังคม การบริโภค รวมถึงคุณภาพชีวิต ที่หากเรามองในอีกมุมหนึ่งอาจจะพบว่า สภาพความเป็นอยู่ของประชากรส่วนใหญ่ในปัจจุบันรวมถึงการขยายตัวทางเศรษฐกิจ social mobility ของประชากร คุณภาพชีวิต อาจจะไม่สามารถเกิดขึ้นได้หากเราไม่มีอุตสาหกรรมภาคพลังงานและปิโตรเคมีที่ใช้ fossil base โดยที่เรายังไม่มีเทคโนโลยีที่จะมาทดแทนกระบวนการผลิตหรือพลังงานนั้นๆในอนาคตอันใกล้
หากมองไปรอบๆตัวเรา ผู้เขียนมั่นใจว่าของที่ทางผู้อ่านใช้อยู่อย่างน้อยต้องถูกขนส่งในช่วงใดช่วงหนึ่งโดยภาคการขนส่งที่ใช้พลังงานที่ผลิตมาจากน้ำมันดิบ ไม่ว่าจะเป็นเสื้อผ้าที่ผลิตออกมาจากโรงงานแล้วถูกบรรทุกข์โดยรถพ่วง 18 ล้อที่ใช้น้ำมันดีเซล ขนตู้คอนเทนเนอร์ ไปยังศูนย์กระจายสินค้า หรือจะเป็นอุปกรณ์ อิเล็กทรอนิกส์ เช่น แล็ปท็อป แท็บเล็ต หรือสมาร์ตโฟน รุ่นใหม่ล่าสุดที่ถูกบรรจุใส่ตู้คอนเทนเนอร์ ไปยังเรือขนส่งตู้คอนเทนเนอร์ขนาดใหญ่ที่ใช้เป็น bunker fuel ที่ผลิตมาจากกระบวนการกลั่นน้ำมัน หรือแม้กระทั่งยาหรือวัคซีนที่ใช้อยู่ที่ถูกขนส่งในห้องหรือตู้รักษาอุณหภูมิผ่านการขนส่งทางอากาศยานที่ใช้น้ำมันเชื้อเพลิงสำหรับอากาศยาน (kerosene/jet fuel) ซึ่งก็เป็นผลิตภัณฑ์จากน้ำมันดิบ ในขณะที่ sustainable aviation fuel (SAF) ในปัจจุบันยังคิด
เป็นสัดส่วนที่น้อยมากของปริมาณการบริโภคโดยรวม โดยอุตสาหกรรมภาคการขนส่งนั้นปัจจัยสู่ความสำเร็จที่สำคัญที่สุดที่จะ
แข่งขันได้คือต้นทุนการขนส่งต่อระยะทาง และพลังงานที่ภาคการขนส่งใช้อยู่ไม่ว่าจะเป็นดีเซล ของรถบรรทุกขนาดใหญ่ที่วิ่งระยะทางไกลๆ bunker fuel ของเรือขนส่งตู้คอนเทนเนอร์ขนาดใหญ่ที่วิ่งข้ามมหาสมุทร หรือเครื่องบินที่เราใช้โดยสาร หรือขนสินค้าที่ใช้ jet fuel ล้วนเป็นพลังงานและเทคโนโลยีที่มีการพัฒนามาอย่างต่อเนื่องเป็นเวลาหลายสิบปีหรือเกือบร้อยปีล้วนมีน้ำมันดิบเป็นตัวตั้งต้น และทำให้ต้นทุนด้านพลังงานของภาคการขนส่งต่อระยะทางมีประสิทธิภาพสูงสุด ด้วยเทคโนโลยีแบตเตอรี่ในปัจจุบันที่มีอยู่และในอนาคตอันใกล้นี้ ภาคการขนส่งทางบกอาจจะมีความเป็นไปได้มากที่สุดที่จะเปลี่ยนไปใช้รถบรรทุกไฟฟ้า อย่างไรก็ดีด้วยขนาดความจุของแบตเตอรี่ และน้ำหนักของแบตเตอรี่ที่มาก รวมถึง charging infrastructure ที่ยังไม่เพียงพอและใช้เวลาในการชาร์จนาน ทำให้การขนส่งด้วยรถบรรทุกไฟฟ้าขนาดใหญ่วิ่งระยะทางไกลๆยังไม่ใช่คำตอบในปัจจุบันและอาจจะต้องใช้เวลาอย่างน้อยมากกว่า 5-10 ปีถึงอาจจะมีเทคโนโลยี ที่เหมาะสมสำหรับการวิ่งขนสินค้าในระยะทางไกลเกินกว่า 600 กิโลเมตรต่อวัน ในขณะที่อุตสาหกรรมการขนส่งทางทะเลผ่านเรือขนส่งขนาดใหญ่ ซึ่งในปัจจุบันมีเรือต้นแบบอย่าง Yara Birkeland แต่ก็เป็นเพียงการวิ่งขนปุ๋ยระหว่างโรงงานใน Porsgrunn ไปสู่ท่าเรือที่ Brevik ใน Norway โดยที่ cruising speed สามารถเดินเรือได้ 30 nautical mile และขนตู้คอนเทนเนอร์ ได้แค่ 120 ตู้ (TEU) เท่านั้นไม่ใช่การวิ่งข้ามมหาสมุทร)และเครื่องบินโดยสารนั้นยังไม่มีเทคโนโลยีอะไรที่จะมาแทนที่การใช้พลังงานจากฟอสซิลได้ในอนาคตอันใกล้
หนึ่งในอุตสาหกรรมพลังงานทดแทนที่มีต้นทุนการผลิตไฟฟ้าต่ำที่สุดในปัจจุบันนั่นก็คือพลังงานหมุนเวียนที่มาจากลม (renewable wind energy) อย่างไรก็ดีเชื่อว่าผู้อ่านอาจจะสงสัยว่าทำไมผู้เขียนถึงกล่าวว่าอุตสาหกรรมพลังงานทดแทนที่มาจากลมต้องพึ่งพาอุตสาหกรรมและภาคการผลิตที่ใช้ fossil base เป็นหลัก ผู้เขียนอยากให้ผู้อ่านนึกภาพตามว่าการที่เราจะสร้าง wind turbine ขนาด 5 megawatt นั้นประกอบไปด้วย เหล็กโดยเฉลี่ย 150 ตันสำหรับการสร้างฐาน reinforce concrete เหล็กอีก 250 ตันใน rotor hubs และ nacelles สำหรับ gearbox กับ generator และเหล็กอีก 500 ตันสำหรับเสากังหันลม (tower) ทั้งหมดถูกขนส่งมาโดยรถบรรทุกขนาดใหญ่หรือเรือบรรทุกสินค้าขนาดใหญ่ที่ใช้พลังงานจาก fossil ดังที่กล่าวไว้ในข้อแรก โดยตัวเหล็กที่ใช้ในการสร้าง wind turbine รวมถึงฐานและเสากังหันลม (tower) ก็จำเป็นที่จะต้องผลิตและใช้พลังงานในการผลิตจาก fossil ไม่ว่าจะเป็น coking coal ที่ใช้ใน blasted furnace และค่าความร้อนสูงที่ใช้ natural gas โดยจากการประมาณคร่าวๆในปัจจุบัน เหล็ก 1 ตันที่ใช้ในการก่อสร้าง turbine ใช้พลังงานสูงถึง 35 gigajoules และยังไม่มีแนวโน้มที่จะใช้พลังงานประเภทอื่นแทนได้
นอกจากนี้ส่วนประกอบของใบพัดที่เรียกว่า airfoils ของตัวกังหันลม (wind turbine) เอง ซึ่งส่วนใหญ่มี 3 ใบพัด บางอันมีความยาวถึง 60 เมตร หนัก 15 ตัน ที่มี core ทำจาก balsa หรือ foam และเคลือบภายนอกด้วยอีพ็อกซีเรซิ่นเสริมใยแก้ว (glass-fiber-reinforced epoxy) หรือโพลีเอสเตอร์เรซิ่น (polyester resins) ซึ่งก็เป็นผลิตภัณฑ์เอทิลีน (ethylene) และมาจากก๊าซธรรมชาติ (natural gas) โดยเฉลี่ยการผลิตอีพ็อกซีเรซิ่นเสริมใยแก้ว (glass-fiber-reinforced epoxy) หนึ่งตันใช้พลังงานในการผลิต 170 gigajoules นี่ยังไม่นับพวกน้ำมันหล่อลื่นที่ใช้ในการหล่อลื่น gearbox หรือ turbine ซึ่งล้วนผลิตจาก fossil base ดังนั้นแม้เราจะสนับสนุนให้เรามีการใช้ Renewable energy มากขึ้นเท่าไหร่ อุตสาหกรรม renewable energy ในปัจจุบันก็ยังไม่สามารถที่จะเกิดขึ้นได้หากไม่มีอุตสาหกรรมน้ำมัน ก๊าซ และปิโตรเคมี (oil and gas และ petrochemical)
ประชากรบนโลกเพิ่มขึ้น 3 เท่าในระยะเวลา 70 ปี จาก 2.5 พันล้านคนในปี ค.ศ. 1950 สู่ 8.1 พันล้านคนในปี 2024 ซึ่งการเพิ่มขึ้นของประชากรตามมาด้วยความต้องการการบริโภคอาหารที่มากขึ้น ซึ่งการที่ภาคการเกษตรสามารถเพิ่มปริมาณอาหารให้เพียงพอต่อความต้องการของประชากรที่เพิ่มขึ้นได้นั้น ก็มาจากความสามารถในการผลิตปุ๋ยที่เรียกว่า synthetic nitrogenous fertilizers ที่มาจากการใช้ ammonia (NH3) ผ่านกระบวนการเป็นองค์ประกอบขึ้นโดยการเปลี่ยนก๊าซไนโตรเจนในอากาศมาเป็นแอมโมเนียเหลวได้สำเร็จโดย กระบวนการที่เรียกว่า haber-bosch process กระบวนการผลิตปุ๋ย nitrogen ดังกล่าวคิดเป็นสัดส่วนถึง 50% ของปุ๋ย nitrogen ที่ใช้ในการเพาะปลูกพืชเกษตรทั่วโลก และคิดเป็นปริมาณถึง 145 ล้านตันต่อปี (เพิ่มขึ้นจากแค่ 3.5 ล้านตันในปี 1950) และเนื่องจากพืชทางการเกษตรคิดเป็น 85% ของแหล่งโปรตีนทางอาหารของประชากรทั้งโลก ดังนั้นหากไม่มีการผลิตปุ๋ย Nitrogen ผ่านกระบวนการดังกล่าว เราก็คงไม่สามารถที่จะผลิตอาหารเพียงพอให้ประชากรบนโลก 8.1 พันล้านคนบริโภคได้ สิ่งสำคัญคือกระบวนการผลิตปุ๋ยดังกล่าวที่เรียกว่า haber-bosch process นั้นใช้วิธีการดึงไนโตรเจน (nitrogen) ออกมาจากอากาศและ ไฮโดรเจน (Hydrogen) ของก๊าซธรรมชาติ (natural gas) ซึ่งถือว่าเป็นหนึ่งในเชื้อเพลิงฟอสซิล (fossil fuel) รวมถึงยังใช้พลังงานความร้อนของแก๊ส (gas) ในการทำกระบวนการ synthesis ซึ่งในปัจจุบัน เรายังไม่มีเทคโนโลยีทดแทนที่เป็น carbon free หรือไม่มีการปล่อยก๊าซเรือนกระจกสำหรับการผลิตปุ๋ยดังกล่าวจำนวนกว่า 145 ล้านตันต่อปี
หรือแม้แต่ประเทศจีนที่เป็นประเทศที่มีการใช้ deploy renewable energy เยอะที่สุดในโลกโดยมีการติดตั้ง พลังงานแสงอาทิตย์ (solar) ถึง 216.9 GW ในปี 2023 เพิ่มขึ้นจากปี 2022 เกินกว่าสองเท่าและมากกว่าการติดตั้งพลังงานแสงอาทิตย์ (solar) ของทั้งโลก รวมถึงมีการติดตั้งพลังงานหมุนเวียนที่มาจากลม (wind turbine) กว่า 76.0 GW เยอะกว่าอเมริกาและยุโรปรวมกัน แต่ในขณะเดียวกันหากมองที่ภาพรวมของปี 2023 ที่ผ่านมา Total energy consumption ของประเทศจีนกลับเพิ่มขึ้นถึง 6.5% เทียบกับค่าเฉลี่ย 10 ปีย้อนหลังที่ 3.4% รวมถึงอุปสงค์ที่ปรับตัวเพิ่มขึ้นของน้ำมันเบนซินและดีเซลกว่า 15% เทียบกับปี2019 ซึ่งเป็นช่วงก่อน covid นอกจากนี้ประเทศจีนในปีที่ผ่านมายังได้ขยายกำลังการผลิตไฟฟ้าจากโรงไฟฟ้าถ่านหิน ซึ่งถือว่าเป็นพลังงานที่สกปรกที่สุดในกลุ่มเชื้อเพลิงฟอสซิล (fossil fuel) เพิ่มขึ้นถึง 70 GW และอีก 47 GW ได้เริ่มผลิตไฟซึ่งคิดเป็นถึง 70% ของจำนวนโรงไฟฟ้าจากถ่านหินที่เพิ่มขึ้นของทั้งโลก แสดงให้เห็นถึงการคงอยู่ร่วมกันของทั้ง renewable และพลังงานฟอสซิล (fossil) จากประเทศที่เป็นผู้ผลิตฮาร์ดแวร์ (hardware) ของอุตสาหกรรมพลังงานทดแทน (Renewable energy) อันดับหนึ่งของโลกได้เป็นอย่างดี ดังนั้นนอกจาก 3 อุตสาหกรรมดังกล่าวที่ผู้เขียนได้กล่าวถึงข้างต้นยังมีอีกหลายอุตสาหกรรมที่มีลักษณะคล้ายคลึงกันและส่งผลกระทบต่อสภาพเศรษฐกิจ สังคม และการบริโภคที่ยังจำเป็นที่จะต้องพึ่งพาพลังงานรวมถึงวัตถุดิบจากอุตสาหกรรมที่ใช้ fossil fuel หรือแม้กระทั่งใช้ fossil fuel เป็นหลัก ซึ่งนั่นแสดงให้เห็นว่าจนกว่าที่เราจะมีเทคโนโลยีที่จะมาทดแทนการใช้วัตถุดิบหรือ Fossil fuel ได้ในอนาคตอันใกล้นี้ co-exist ระหว่างพลังงานทดแทนกับอุตสาหกรรม fossil fuel จะยังเกิดขึ้นต่อไปในอีกหลายสิบปีข้างหน้า การจะบอกให้หลายๆประเทศหรือหลายๆอุตสาหกรรมเลิกใช้ fossil fuel โดยสมบูรณ์คงเป็นไปไม่ได้ ดังนั้นกุญแจสำคัญที่น่าจะช่วยบรรเทาปัญหาภาวะ climate change/global warming ได้ในปัจจุบันน่าจะเป็นเรื่องของ energy efficiency ผนวกกับการเพิ่มผลผลิต (productivity) จากแต่ละการใช้พลังงาน (barrel of oil equivalent) ที่บริโภค หาเทคโนโลยีที่จะมาช่วยลดการปล่อยก๊าซเรือนกระจกจากอุตสาหกรรมดังกล่าวที่ยังจำเป็นต้องใช้ fossil fuel เช่น carbon capture storage มาใช้ควบคู่ไปกับการให้แรงจูงใจ (incentive) ซึ่งรูปแบบดังกล่าวจำเป็นที่จะต้องมีนโยบายสนับสนุนและการบังคับของรัฐที่ชัดเจน รวมถึงกลไกในการกำหนดราคาคาร์บอน (carbon) ที่เหมาะสมที่ต้องทำควบคู่กันไปเพื่อให้เกิดการนำมาปรับใช้ในวงกว้างของภาคอุตสาหกรรมต่อไป
บทความโดย ณรัล ลีลามานิตย์ Project Director Sasin Management Consulting (SMC) สถาบันบัณฑิตบริหารธุรกิจ ศศินทร์ แห่งจุฬาลงกรณ์มหาวิทยาลัย
จุฬาฯ หัวเว่ย และ BUPT ร่วมพัฒนาบุคลากร ICT ในงาน Asia Pacific Cloud AI Forum & Huawei Developer Competition
อธิการบดีจุฬาฯ 1 เดียวผู้นำด้านการศึกษาจาก 48 ผู้ทรงอิทธิพลไทย
นิสิตคณะศิลปกรรมศาสตร์ จุฬาฯ ชนะเลิศการประกวดเดี่ยวเครื่องดนตรีไทยระดับอุดมศึกษาประเภทจะเข้และซอสามสาย
นิสิต BBA จุฬาฯ เยี่ยม! ทำคะแนนสอบ TCAS Inter 2024 ได้ที่ 1 ของประเทศ
ขอเชิญร่วมงาน “Chula Lunch Talk: อยู่ออฟฟิศก็เฟิร์มได้! ท่าออกกำลังง่าย ๆ สู้ Office Syndrome”
24 ม.ค. 68
สำนักงานวิทยทรัพยากร จุฬาฯ
แนวปฏิบัติเพื่อรองรับมาตรการจัดการในสถานการณ์ปริมาณฝุ่น PM2.5
จุฬาฯ เป็นที่ที่เราได้มาพบตัวเองจริงๆ และเป็นช่วงเวลาที่สนุกที่สุด คุณรสสุคนธ์ กองเกตุ (ครูเงาะ) นิสิตเก่า คณะนิเทศศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย
จุฬาฯ เป็นที่ที่เราได้มาพบตัวเองจริงๆ และเป็นช่วงเวลาที่สนุกที่สุด
คุณรสสุคนธ์ กองเกตุ (ครูเงาะ) นิสิตเก่า คณะนิเทศศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย
เว็บไซต์นี้ใช้คุกกี้ เพื่อมอบประสบการณ์การใช้งานที่ดีให้กับท่าน และเพื่อพัฒนาคุณภาพการให้บริการเว็บไซต์ที่ตรงต่อความต้องการของท่านมากยิ่งขึ้น ท่านสามารถทราบรายละเอียดเกี่ยวกับคุกกี้ได้ที่ นโยบายการคุ้มครองข้อมูลส่วนบุคคล และท่านสามารถจัดการความเป็นส่วนตัวของคุณได้เองโดยคลิกที่ ตั้งค่า
ท่านสามารถเลือกการตั้งค่าคุกกี้โดยเปิด/ปิด คุกกี้ในแต่ละประเภทได้ตามความต้องการ ยกเว้น คุกกี้ที่จำเป็น
ประเภทของคุกกี้ที่มีความจำเป็นสำหรับการทำงานของเว็บไซต์ เพื่อให้ท่านสามารถใช้เว็บไซต์ได้อย่างเป็นปกติ ท่านไม่สามารถปิดการทำงานของคุกกี้นี้ในระบบเว็บไซต์ของเราได้
คุกกี้ประเภทนี้จะทำการเก็บข้อมูลพฤติกรรมการใช้งานเว็บไซต์ของท่าน โดยมีจุดประสงค์คือนำข้อมูลมาวิเคราะห์เพื่อปรับปรุงและพัฒนาเว็บไซต์ให้มีคุณภาพ และสร้างประสบการณ์ที่ดีกับผู้ใช้งาน เพื่อให้เกิดประโยชน์สูงสุด หากท่านไม่ยินยอมให้เราใช้คุกกี้นี้ เราอาจไม่สามารถวัดผลเพื่อการปรับปรุงและพัฒนาเว็บไซต์ให้ดีขึ้นได้ รายละเอียดคุกกี้